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Abstract. Models of temporal association i n  neural networks are generalised to provide 
mechanisms for decision making and loop control. Systems equipped with these capabilities 
can handle situations where a succession of states is not unambiguously defined and the 
system has to choose which out of several, in principle equivalent, paths it is going to 
follow. The choice is made on the basis of past experience of the network. No short-term 
synaptic plasticity is needed. 

1. Introduction 

The collective behaviour of neural networks with symmetric synaptic interconnections 
is by now rather well understood [ 1-81. It has been interpreted as a relaxational motion 
in the free energy landscape associated with an energy function or Hamiltonian: 

with symmetric couplings J ,  = J I .  As time proceeds, the dynamics converges to a static 
equilibrium. Data can be stored in the couplings in that by a suitable choice of the 
JI, several specific firing patterns (5,” ; 1 S i S N } ,  1 s I/ s q, of the formal neurons S, = *1 
can be made stable states of the Hamiltonian (1). 

More recently, issues of temporal association in neural nets, such as those involved 
in counting, in reciting poems, and in the control of motion, have been raised [9-171. 
Since temporal association is evidently incompatible with the conditions of static 
equilibrium, it had been realised rather early [2,9] that, to achieve transitions between 
a given set of nominated patterns of the network, a certain amount of asymmetry of 
the synaptic connections is needed. On the basis of this idea, several models of sequence 
generators have been proposed. These can roughly be divided into two categories: 
models that rely on short-term synaptic plasticity [9, 101 and models that d o  not [ 11-17]. 

In most of the sequence generators so far considered, asymmetric interactions are 
used to encode transitions between pairs of embedded patterns. Temporal association 
in these models is restricted to situations where a succession of states is always 
unambiguously defined, i.e. to linear or cyclic sequences or  to sequences down a tree 
structure [ll-161. In the present paper we devise mechanisms by which such a 
restriction can be removed. In so doing, we opt to avoid introducing short-term synaptic 
plasticity, since models with fixed synapses are usually much simpler and therefore 
easier to analyse. Moreover, they are also more easily adapted to situations which are 
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different from those for which they were designed in the first place. For a complemen- 
tary approach, which does rely on synaptic plasticity during retrieval, we refer to 
Dehaene et a1 [lo]. 

Our method of storing and recalling complex sequences generalises the models for 
‘linear’ temporal association of Kleinfeld [ 113 and Sompolinsky and Kanter [ 121 by 
introducing synapses with multiple time delays. Depending on the delay mechanism, 
there are two basically different approaches, which we shall discuss in turn, one relying 
on three- (or higher-order) neuron interactions and another doing without them. 

A related approach to the generation of simple and certain complex sequences in 
neural networks operating with parallel dynamics was recently proposed by Personnaz 
et a1 [ 171. They use pseudo-inverse solutions, as we shall do below when dealing with 
correlated patterns, and a concatenation-of-states technique instead of time delays to 
deal with certain ambiguities. Let us further mention that complex sequences in the 
context of matrix memories and neural networks had, in fact, already been considered 
by Kohonen [18] and Labos [19] several years before the current phase of research 
activities on sequence generation in neural nets began with work of Peretto and Niez 

The number of possible realisations of complex sequences is clearly without bound 
and there is no way of explicitly dealing with all of them. We shall therefore illustrate 
the salient features of our approach by way of reference to an example, namely the 
problem of encoding and recalling a succession of states consisting of several disjoint 
linear pattern sequences, separated from each other by yet another common and 
recurring sequence of states. Such a problem would arise, for instance, in singing a 
song of many verses, separated from each other by a chorus. We shall present two 
basically different realisations, discussing the dynamics of the version relying on 
three-neuron interaction in some detail and only hint at the modifications and sim- 
plifications for the second. We then extract from our example what we take to constitute 
the syntax of our approach to complex association and discuss the role and range of 
the various parameters of our model. Finally, we generalise our theory to deal with 
complex sequences of correlated patterns and present a discussion. 

~91 .  

2. The model: three-neuron interactions 

We consider a network of N neurons in which the elementary linear sequences P,, 
O S  p s r, are to be stored, each sequence P, consisting of a succession of states (p ,  p ) ,  
with 1 s p ~ p , .  We require the sequences to be recalled in the order P,PoP,Po.  . . P,+, 
so that there is an ambiguity whenever the system is in the state (0, po) .  In a song, P I ,  
P 2 , .  . . , would be the verses and Po the chorus. By identifying P,+, and P , ,  we get a 
complex cycle with repetitions. We denote by {t?’; 1 d i G N }  the pattern ( p ,  p ) ,  
which for the moment we assume to be random and unbiased, so that the ,$?’ take 
the values * 1 with equal probability. 

Our method to store the above-mentioned complex sequence is based on models 
for linear sequence generation proposed by Kleinfeld [ 113 and Sompolinsky and Kanter 
[ 121, supplemented by mechanisms to resolve the ambiguity that occurs at the end of 
Po. To encode the complex sequence, we need three kinds of synapse. The synapses 
of the first kind are symmetric [2]: 
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and are used to stabilise the individual firing patterns of the complex sequence. The 
synapses of the second kind [ 2,11,12] : 

are asymmetric and generate transitions between successive states, provided that 
‘succession’ is unambiguously defined. The primed sum in (3) therefore excludes the 
state (0, po), the ‘last note of the chorus’. Furthermore, we define 

so that Po is entered after each Pp,  p # 0. To encode the proper succession of the linear 
subsequences, a third kind of asymmetric synapse is needed. In the first approach to 
be discussed here, this synapse embodies a three-neuron interaction, namely 

We turn to the other approach in 0 4. 
As in the models for linear temporal association [ 11-15], the synapses J f ’  and JFd 

must be endowed with their own characteristic response times in order to recall the 
encoded complex sequence in a controlled fashion. In particular, two different response 
times are needed for the two input channelsj and k of J$):  a short one ( T ~ ) ,  associated 
with j ,  to initiate a transition from (0, p o )  to one of the P,, p # 0, and a longer one 
(q,) associated with k to ‘remind’ the system of the previous P, and thus provide the 
necessary information as to which Pp comes next. We will thus take the local field 
(postsynaptic potential) experienced by neuron i to be given by 

h , ( t ) =  h l ” ( t ) + h i 2 ’ ( t ) + h 1 3 ’ ( t )  

Here Sf( t ) ,  A = a, b, denotes a convolution of Sj( t )  with a non-negative memory kernel 
wa( t )  characterised by an internal time constant T~ [ 11-13]: 

Sj( t ) = ds  wa( t - S )  S, ( s ) loE ds wa(s) = 1 A=a,b .  (7) 

Various choices for the memory kernels wa( t )  may be considered and were previously 
discussed in the literature, the most popular being S function, step function and 
exponential delay [ll-151. If the dynamics of the system is defined by the threshold 
condition 

II, 

S , ( r + A t )  =sgn[h,(r)] (8) 
or a probabilistic version thereof, either sequentially or in parallel, all three memory 
functions give rise to stable complex sequences. For parallel dynamics, one may put 
A t  = 1 in (8). For sequential dynamics, A t  should scale with system size N as A t  cc N - ’ .  
For the sake of definiteness, the ensuing discussion of the dynamics will be phrased 
in terms of exponential delay. In passing we note that the inclusion of ‘delayed 
self-excitations’ through hj2’( t )  and hi3’( t )  is intentional (though immaterial in the low 
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loading limit). The purpose of these contributions to the local field is to induce 
transitions and decision making, on the basis of past experience of the whole system. 

Before proceeding to a discussion of the dynamics, let us note that, for instance 
in the case of 8-function delays, one can dispense with the symmetric synapses ( 2 )  
[ 15,201. For general delay mechanisms, however, they are necessary to stabilise the 
individual patterns of the sequence and thereby to prevent that the sequence gets 
washed out as time proceeds. 

3. Dynamics 

The dynamics of the network is most easily explained in the limit where q /  N = 
N-I Z;=,pp-*O,  as N-m. In this limit, the local field in (6) may be expressed in 
terms of the overlaps mp,,( t )  = N - ’ Z i ( Y S j ( t )  as 

h , ( t ) =  t ? ” m , , , ( t ) + &  C’ t?+@’fi;, ,(t)+E‘ t ~ + ’ , ’ f i ~ , P ~ ~ ( t ) f i ~ , P ~ ( r ) .  (9) 
(A,) (P.,) p = l  

The fii,,(t) denote a convolution of m , , ( t )  with the memory kernel wA(t) as in (7) .  
Each of the m;, , ( t )  builds up while the system is in the corresponding state ( p ,  p), 
becomes of order one, if the system has stayed there for a time of order T ~ ,  and decays 
on a timescale of the same order of magnitude, once the system has left ( p ,  F ) .  This 
mechanism induces transitions between successive states belonging to the unam- 
biguously connected linear subparts PpPo of the complex sequence at regular time 
intervals of order 7, on the basis of the contributions of h;”( t )  and h12’( t )  to the local 
field alone, as is discussed at length in [ll-151. 

Assuming now that the system has entered the linear subsequence Po (the chorus) 
via the state ( y, p , ) ,  for some 1 s y G r, we see that hj3’( t )  becomes sizeable only when 
the system has traversed Po and spent a time of order T, in the state (0 ,  p o ) ,  provided 
76 > T,  is chosen such that some memory rf~”y.~, > 0 of the last pattern of the sequence 
P, which immediately preceded Po is still present. If, moreover, f i ” y P v  dominates the 

for p # y (again a matter of tuning T ~ )  and E is large enough, then / ~ ! ~ ’ ( t )  will 
induce a transition to the state ( y f l ,  l ) ,  the first pattern of the subsequence Py+l, 
which was meant to follow P,Po. Immediately after the transition, hj”( t )  still favours 
( y +  1, 1) for a time of order T,  during which this contribution to the local field decays, 
but becomes negligible once the transition into ( y + l ,  2 )  is achieved. Only after the 
system has completed the next connected linear subpart P,+,Po does l ~ ; ~ ’ ( r )  become 
sizeable again and will, according to the foregoing discussion, induce a transition into 
( y + 2 , 1 ) ;  and so on. 

We have verified the above scenario by solving (8) directly in the thermodynamic 
limit, using the exact dynamic evolution equations for the overlaps mp,, ( t )  as derived 
by Riedel et a1 [15]. The equations are 

m,, , ( t+  1) = C p ( x ) x ” . ”  tanh[ph(x, t ) ]  (10) 
x 

for parallel dynamics, and 

X 
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for sequential dynamics. Here x ranges through the 24 corners of the hypercube 
C4 = [-1, 1Iq, the range of the random vectors ti = ((7’”; Os p s r, 1 s p 6 p p ) ,  p ( x )  = 
Prob{gi = x} [7, 21, 221, and 

is the local field on the sublattice Z(x) which consists of those sites i where & = x. As 
usual, p denotes the inverse temperature and m is a differentiation of m with respect 
to time. For details, the reader may consult [15,23]. 

Figure 1 presents a solution of (10) for a complex cycle of the form PI PoP2PoPl . . . , 
where each of the elementary sequences consists of three states. In  figure 2 an example 
is shown where a three-neuron interaction is used to provide loop control: the 
system loops around PI = {( 1 ,  p ) ;  p = 1 , .  . . ,4}  twice, then escapes into P2 = 
((2, p ) ;  p = 1,  . . . , 5 } ,  enters PI  via (1 ,4)  again, and so on. The three-neuron interaction 
is chosen so that its contribution to the local field is hj3’( t )  = i ( ( f ’ I  - (1’34)liif,4( t)AP,3( t ) ,  
and J p ’  has no term that would induce a transition (1 ,4)  + (2, 1 ) .  The rationale behind 
this choice of hj3’( t )  is that it switches off the ‘loop-closing’ transition term (1 ,4)  + ( 1 ,  1 )  
encoded in J!,? and simultaneously switches on a transition term (1 ,4)  + (2, 1 )  that 
causes the system to leave the loop at a specified time controlled by w b ( t ) .  

12.1 I n 1 . 1  1 . 1  

1 
1000 

(1.11 3 J U L  
0 500 

T i m e  

Figure 1. Solution to (10) for the complex cycle P,P,,P,P,.  . . where P I  and Pz are ‘verses’ 
and Po is a ‘chorus’. Each trace represents the time evolution of an overlap m , , ( t )  with 
one of the embedded patterns ( p ,  p). The memory kernels w, and w,, decay exponentially 
with T~ = 15 and rh = p o ~ G  =45  iterations. The inverse temperature is p = 10, the asymmetry 
parameters are E = 1 and E‘ = 17.75, respectively. 

Numerical simulations show that the above analysis still holds, i.e. stable complex 
cycles still exist-when a = q /  N is finite and the random overlaps between the patterns 
cannot be ignored. The only proviso is that a is not too big. Our numerical work also 
confirms the stability of small complex cycles in the presence of extensively many 
other patterns outside the cycle, in agreement with an analytical treatment from [ 151. 
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1000 500 0 
Time 

Figure 2. Solution to (10) for a system with three-neuron interactions providing loop control. 
The memory kernel w, and the parameters T,,, p and E are as in figure 1. Here, however 
E = 1 and wh is a 8-function delay with T~ = 215 iterations. 

4. Two-neuron interactions 

So far our analysis has been entirely within an approach that relies on three-neuron 
interactions. One might object that in a fully connected system this approach would 
raise severe wiring problems. Serious though the objection is, one may circumvent it 
by introducing dilution in the manner of [8]. Our analytical theory [15] is able to deal 
with it. We have as yet, however, not undertaken any quantitative studies of this point 
in the present context. A solution in a completely different direction is possible, if we 
use delay mechanisms, such as &function delay, which have memory functions with 
support bounded awayfrom zero. Using this type of delay, one may replace J‘,“ in (5) 
by 

j;,” = &-I g+IJgWp (13) 
p = l  

and take the local field experienced by neuron i to be 

h,(  t )  = J y ) S J (  t )  +E Jl,“$( t )  +c jy’g;( t )  
J (21)  J J 

= 2 ( ? ” m , , ( t ) + &  1’ t ? ” @ ’ f i ; , , ( t ) + E  . $ ~ + l * l f i ~ , p o ( t ) .  (14) 

Equation (14) nowreplaces (6) and (9). We have W b ( t ) = S ( t - T b )  with q , = ( p o + l ) t o ,  
and to denoting the time the system spends in each state (see P 6 ) .  In the present setup, 
the mechanism that induces the transition from (O ,p , )  to some ( y +  1, 1) is quite 
different from what it was before. It is exclusively controlled by the state (7, p , )  which 
immediately preceded the ‘chorus’ Po and the mechanism is the same as in the standard 
sequence generators [ll-151. 

Unlike before, the transition is not triggered by (0, p o )  in the sense that the system 
having been in (0, p o )  for a specified time to is immaterial for the transition into ( y + 1, 1) 
to occur. What is relevant, so to speak, is the last note of the preceding verse rather 

(P,”) (P.”) p = l  
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than that of the chorus. This ‘non-locality in time’ aspect may seem somewhat 
implausible. It can be avoided by adding weak direct transition terms from (0, p o )  to 
all of the ( p ,  l ) ,  p f 0, 

J ;  = ( 5 Y . I )  [ ~ ’ p ~ l  (15)  
p = l  

and letting the local field at i be given by 

h , ( t )  = C 5Y.”mP, , ( t )+& 1’ ~ ~ + “ ‘ f i ~ . + ( t )  
( P + )  ( P + )  

/ .  \ 

with wb( 7) = 6 (  t - 7 6 )  as above. Given the inverse temperature p, eo and  d may be 
chosen small enough so that neither the third nor the fourth term on the right-hand 
side of (16) would induce any transition by itself, and large enough so that the 
combination does. The choice of the final state depends on the ‘verse’ Py that preceded 
Po in that the fourth term selects ( y +  1 ,  1 ) .  Using standard arguments [ l l -151,  the 
reader can easily convince himself that, for instance, in the case of parallel dynamics 
at T = 0 the bounds eo < r - ’ ,  E‘ < 1 and reo+ E‘> 1 will ensure that the complex sequence 
generator (16) functions as desired. We have checked this both by solving (10) and  
by numerical simulations. 

5. Syntax 

Stepping back for an  overview, one may ask what is the essence or syntax of our  
approach to complex association that is needed to tackle problems different from the 
examples presented above. The answer simply is that it is contained in the examples, 
and may therefore be extracted from them. This is what we now proceed to do. 

In all cases the problem is to deal with an  ambiguity of the following form. Given 
a network state 0, there are several possible paths P,, 1 s p S r, which start here. Let 
us denote the entrance states of these paths by p, where p ranges through R. There 
are thus several possible transitions 0-  p with 0 as the initial state. Once the system 
is in 0, extra information is necessary for the decision as to which P, is to be taken 
(which transition O +  p is to be initiated). This piece of extra information is provided 
by past experience of the network. A subset G of the set of embedded states is selected 
to function as ‘control states’ as follows. The fact that one of them was visited at a 
specified time before the decision where to go to starting from 0 is on the agenda 
determines which of the possible target states p, p E R, is to be the final state of the 
transition. 

In the two-neuron interaction approach, this is achieved by introducing synapses 
of the form 

where p and y range through the sets R and G of target and control states, respectively. 
In the song example of the previous sections, these sets are given by the first and last 
notes of the verses. In (17), W is a matrix whose elements Wp.y  are zero or one, 
specifying which of the target states is selected by each of the control states. Each 
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term in (17) may, if necessary, be endowed with its own characteristic response time 
rPy so that the contribution of (17) to the local field is 

where 7py may, but need not, vary with p and y. As discussed in the previous section, 
one may in addition introduce weak direct transition terms from 0 to all of the target 
states p so that transitions are actually only induced by combining them with (17) and 
(18). 

In a three-neuron interaction approach, one would have synapses of the form 

and 

hj3' = F 6: W,,,A,"( t)my( t )  
P. Y 

instead of (17) and (18). 
If the number IRJ of target states equals the number IG( of control states, then the 

matrix W is a permutation matrix. If (RI < (GI, some of the control states may select 
one and the same target state. On the other hand, for IRI > [GI some of the control 
states are responsible for more than one transition. This can (and must) be achieved 
by endowing different transition terms associated with such control states with different 
response time T ~ ~ .  A trivial application of this technique (without the aspect of path 
selection) is already contained in the song example of the previous sections, where 
the states (7, p , )  controlled the transition into (0, l ) ,  using the delay T,, and into 
( y i  1, l ) ,  using the delay 7 6 .  

Note that the problem of loop control is covered by the above general considerations. 
Here, each time the final state of the loop is encountered, the question is whether to 
leave the loop or to stay there. 

6. How to choose the parameters 

The performance of the complex sequence generators discussed in the previous sections 
depends on various parameters, namely the inverse temperature p, which quantifies 
the level of stochastic noise in the system, the decay times T, and 76 of the memory 
functions w, and wb and the asymmetry parameters E and E' and in (15) and (16) also 
E ~ .  Clearly, the problem how to choose these parameters cannot be discussed without 
reference to the topology of the complex sequence itself. To illustrate the general case, 
we shall therefore return to the song paradigm of the previous sections. 

The problem of choosing parameters can be divided into two simple subproblems. 
As far as the dynamics on the unambiguously connected linear subsequences PpPo is 
concerned, it is, as usual [ll-151, completely determined by the parameters p, T,, and 
E alone. In particular, the persistence time to [ 121, the time the system spends in each 
state (p ,  p )  # (0, p o ) ,  is a function of p, T, and E. Once to is known, the dynamics of 
the transitions (0, p o )  + (p ,  1) at the branch point (0, p o )  can be discussed. Given to, 
the time t* the system spends in the branch point state (O ,po)  is determined by the 
remaining parameters 76 and E' (and, possibly, eo). It can be evaluated through 
arguments analogous to the ones used to compute to.  
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The persistence time to for the linear case was calculated by Sompolinsky and 
Kanter in the zero-temperature limit [12]. Since our evaluation of t* draws upon the 
same set of ideas, we shall briefly repeat the argument of [12] and give a heuristic 
generalisation of it to non-zero (but low) temperatures. 

Let us consider a standard sequence generator [ l l -151 operating with a set of 
symmetric synapses J y '  and a set of asymmetric synapses J!,?, which are endowed 
with a slow dynamic response characterised by a memory function w , ( t ) ;  cf (2) and 
(3). We assume that transitions between successive states of the sequence (here, for 
simplicity, denoted by p )  have occurred regularly in time with period to .  We then 
consider the local field at i when the system has been in state p for a time 6: 

(21) h,(  t )  = 57 + E [ t ? + l  W,(O, 6 )  + 5Y W,(6,6 + t o )  + 5:-' W,(S + t o ,  8 + 24)). . . ] 
where 

t 2 )  = w , ( t )  dt. 1,: 
According to [12], the transition from p to p + 1 starts on the special sublattice 

I ,  = { i ;  [[" = -57 for all U # p }  (23) 

where the spins have been parallel to .$?+I all the time except when the system was in 
state p. On this sublattice, the local field is biased most strongly in favour of t?+' 
and the transition is imagined to start when h , [ r  becomes negative on I, .  The 
corresponding 6 must be identified with to .  If the sequence is of sufficient length, so 
that we have W,(O, 6 ) +  W,(6, 6 + t o ) +  W,(6+to ,  S+2t0 )+  . .  . = 1  in (201, and if 
transients are neglected, this gives the following equation connection to, E and 7, : 

0 = h[(f = 1 + E WO( to, 2to) - E [  W,(O, t o )  + W,(2t,, 3t0) + . . . 3 
= 1 - E + 2E WO( t o ,  2t,) (24) 

so that to can be determined in terms of E and 7,. This has been done for various 
memory functions in [ 121. 

The above argument is valid for zero temperature ( T = 0) only. It may be generalised 
to non-zero temperatures by noting that fluctuations will initiate the transition even 
before h,[Y changes sign on I,. The reason is that for T # 0 ( p  < CO) we have Prob{ S, ( t + 
A t )  = *[Y} = f{ 1 * tanh[ph,[Y]}. Thus a substantial fraction of the spins is already 
flipped from (? to ( ? + I  = -67 and the transition starts, once ph,[Y decreases below a 
certain threshold Bo on I , .  Assuming, as before, that transition times are negligible 
and that m , ( t ) -  1 while the system is in state U, we conclude that, except for the 
difference in ?,-which is to be determined-the right-hand side of (24) remains 
unaltered. The left-hand side of (24) must be replaced by the threshold p - ' B o  so that 
we obtain 

( 2 5 )  

An immediate consequence of (25) is that the minimum value of E for which stable 
sequences occur has a p dependence of the form ~ ~ ~ ~ ( p )  = 1 - Bo/@, which is not exact 
[15], but a reasonable approximation. Applying (25) to 8-function delay, we find that 
t o =  T, for all E > E , , , ~ ~ ( P ) .  

For exponential delay, (25) predicts to to be a continuous function of E and p, 
which diverges whenever E approaches E,,,["(P) from above. The value of Bo is related 

p-'Bo= 1 - E  +2EW,(t,, 2 t o ) .  
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to a crtical probability Prob{S,(t+At)=-,$y}=p* for i in I,, which is the minimal 
fraction of spins that have to be flipped from 67 to , $ ? + I  = - 6, ,.I on I ,  to induce the 
transition. Taking p* = 0.015 or, equivalently Bo = 2.09 reproduces the data rather well 
at low temperatures; see figure 3. Moreover, away from the critical boundary E,,,,"@) 

the computed values of to are rather insensitive to variations of the parameter p * .  This 
completes our discussion of the parameters relevant for the dynamics on the linear 
subparts of complex sequences. 

The analysis of the dynamics at branch points relies on the same ideas. Returning 
to the song example of the previous sections, we compute the persistence time t* in 
the state (0, p o ) .  To do so, we assume that the system entered Po (the chorus) via P,, 
and that it has been in ( 0 ,  pa) for a time 6, so that the local field at i is 

h,( t )  = E [ , $ : ~ ~ o  WO( 6, S + t o )  + Wu( 6 + t o ,  6 + 2t0) + . . . ] 
wa(O,  Wb(a+(pO-l)rO, G + p O t O ) .  ( 26 )  

Here we have used the setup of P 2 and assumed that r b  is chosen so that m ; - l * p y - , ( t )  << 
m ; , p 7 ( t )  = wb = wb(6 +(pa-  l ) t o ,  6+poto) .  Following the same line of reasoning as 
above, we conclude that the transition to ( y +  1 ,  1) starts when ph,( t ) e y 9 P ~  decreases 
below the threshold Bo on Z0,&. Identifying the corresponding 6 as t * ,  we get 

(27) 

+ ;g"" 

P- 'Bo=  1 - E  + 2 &  W,(t*, f * +  t o ) -  W,(O, t*)[;Wb-&]. 

To obtain (27 ) ,  we have also assumed that P,Po lasted long enough to justify the 
replacement of Wu(6+ro ,  6+2t0)+ W,(6+2t0, 6+3 t0 )+ .  . . by 1 -  W,(0, 6 + t o )  in 
(26 ) .  Once p, 7, and E ,  and thereby t o ,  are given, (27) relates t* with 76 and i. If, in 
addition, we require 6 = t* = t o ,  we can use (25)  and solve E' in terms of E and to :  

E " = E /  w b = & / W b ( ~ O ~ O , ( ~ O + l ) t O ) .  (28) 

With parameters as in figure 1 ,  we compute E' to be 16.59, whereas we had to take 
E ' =  17.75. The discrepancy is mainly due to the short length of Po and to the differences 
between the measured and calculated values of to (see figure 3) .  

0 20 4 0  60 
P 

Figure 3. Persistence time I, for a standard sequence generator as a function of the inverse 
temperature p, for various values of the asymmetry parameter E. The memory kernel w, 
decays exponentially with +o = 15. Full lines represent theoretical values obtained from 
(23) ,  broken lines 'measured' values obtained by solving (10) for a cycle of 9 patterns. 
Squares refer to E = 1, circles to E = 1.1 and triangles to E = 1.5. 
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Similarly, with the two-neuron interactions of 0 4 we find 

p - ’ ~ ~  = 1 - E + 2~ W, ( t*, t* + to)  + E WO (0, t * )  - gwb 

p - ’ Bo = 1 - E + 2 E W, ( t* ,  t * + t o )  + ( E  - r E o )  W, (0, t * )  - E‘ Wb 

(29) 

and 

(30) 

for the versions without and with direct transition terms, respectively. Again, given 
p, T~ and E, the persitence time t* may be computed as a function of E and Tb (and, 
as the case may be, E ~ ) .  Note that taking 8-function delay for wb, with Tb = ( p o +  l ) t o ,  
bounds t* in (29) and (30) by tos t* < 2t0. Alternatively, one may prescribe t* (within 
these bounds) and compute the appropriate value of E‘ or of the allowed ( E ,  E ~ )  

combinations. In all cases, we have found the predictions of (27)-(29) to agree well 
with our numerics. 

The above discussion has been in terms of sequential dynamics. In the case of 
parallel dynamics, time is discrete, the dynamics is described by the iterative equation 
(10) instead of the differential equation ( l l ) ,  and the convolution integrals (7) must 
be replaced by infinite sums, with memory kernels adapted accordingly. In spite of 
all this, the final formulae for to and t* remain unaltered. 

7. Complex sequences of correlated patterns 

As it stands, the theory of complex association described above is applicable only to 
unbiased binary random patterns. An extension that works for any complex sequence 
of linearly independent patterns is, however, easily devised, using ideas of error-free 
recall of memories in networks with symmetric couplings [17,23,24]. To see this, 
consider a complex cycle of the form P,PoPzPo. . . PrPo. . . introduced in § 2. Let us 
denote by C the correlation matrix of the individual patterns of the complex cycle, 
with elements 

For linearly independent patterns, its inverse C-’ exists, so that the following three 
types of synapse: 

and in the three-neuron interaction approach of Q 2: 

(34) 

of which the latter two are each endowed with the same dynamic response as above, 
will drive the system through the complex sequence, irrespective of the correlations 
among the patterns or their mean level of activity. To wit, expanding Si(t) in the 
manner of [24] according to 

P II 0.L’ J ! ! ’ =  11 k c 6:’ ‘ ’ I  ( c - )O,po;p,w ( -’ ) y.p7 ;o, U 6 j  ’ 6 k  
y = l  ( p . + ) ; l u , v )  
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where { S S , }  is orthogonal to all the patterns, and similarly for $ ( t )  and $ ( t ) ,  we 
compute the local field to be 

To elucidate the formal equivalence with (9),  we have again stayed with the essentially 
finite-q case. The above discussion of the dynamic features of the network may now 
be repeated word for word, with the a,,,(t) taking the role of the mP,,(t). The exact 
dynamic evolution equations are likewise easily rewritten, so as to take correlations 
into account. 

8. Summary and discussion 

To summarise, neural networks operating with multiple time delays were shown to be 
capable of complex forms of temporal association, including loop control. The under- 
lying mechanisms of decision making on the basis of past experience of the network 
appear to be rather natural in view of omnipresent synaptic delays in neural networks 
[25]. Owing to the transparency of their implementation, these mechanisms easily 
allow for extensions which, if need be, should be capable of handling situations more 
complicated than those explicitly considered in the present paper; cf 0 5. Furthermore, 
our theory also allows analytic treatment of complex sequences in neural networks 
with non-linear synapses [ 151. Non-linear synapses, in particular clipped versions of 
the J y ) ,  J y )  and JgL,  are relevant to hardware realisations. 

There is a potentially interesting application of the ideas put forward in the present 
paper, which we would like to mention. It combines methods for complex sequence 
generation with the capabilities of networks with non-linear synapses. Besides storing 
a certain set of patterns, non-linear synapses can also be used to store the results of 
all possible logical operations between pairs of these patterns as stable states of a 
neural net [22,26]. These states can then serve as target or control states of transitions 
just as the states corresponding to the patterns themselves. They can, for instance, be 
connected to form a 'program' running on the net, which performs computations on 
patterns that go beyond simple pattern recognition, completion or association tasks. 

A complementary approach to complex temporal association was recently proposed 
by Dehaene et a1 [lo]. Their neural net differs from Hopfield-type networks in that 
its fundamental entities are pattern-specijc neural clusters-resembling grandmother 
cells-which allow a continuum of activity levels but are otherwise of unspecified 
internal structure. The mechanism of temporal association-simple or complex-in 
their neural net is based on two- and three-cluster interactions (the synaptic triads 
[lo]), with short-term synaptic plasticity during retrieval as an essential ingredient. 
Moreover, it appears that the sequences of Dehaene et al [ lo ]  are complex only at 
the level of the output clusters and that, taking internal clusters into account, the 
network as a whole does go through linear sequences. 

In the present approach, short-term synaptic plasticity is dispensed with altogether. 
Instead, our fundamental concept is the control state, a special network state which 
initiates and controls not one but several transitions within the complex sequence, 
notably those where paths diverge. The corresponding transitions are encoded in 
synapses endowed with appropriate transmission delays. The introduction of multiple 
time delays is not ad  hoc, as it may seem at first sight. On the contrary, a broad 
distribution of transmission delays is a natural aspect of brain morphology [27]. 
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Moreover, it has been shown recently [20] that the coding of different transitions by 
synapses with different transmission delays in the manner envisaged in the present 
paper is a salient feature of Hebbian learning in formal neural networks operating 
with transmission delays. 

Acknowledgments 

The authors are indebted to H Horner for illuminating discussions on the subject, and 
to R G Palmer for a critical reading of the manuscript and helpful suggestions. This 
work has been supported by the Deutsche Forschungsgemeinschaft (Bonn). 

Note added in proof: After submission of this paper we became aware of recent work by Guyon et a1 [28] 
where related results, based on (non-local) exact storage prescriptions, were obtained for networks operating 
with parallel dynamics. 
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